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ABSTRACT

Tessellation or tiling can be useful in multiple domains, such as computer
graphics, physics, architecture etc. In this article the tessellation prob-
lem is explored and a recursive algorithm is proposed, implemented and
validated for generating equilateral monogonal tessellations (including all
semi-regular tessellations) in two dimensions inside any arbitrary simple

polygon.
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1. Introduction

Tessellation or tiling can be defined as a dissection of an infinite plane into
shapes of a finite area, see |[J. Scherphuis| (2018]). This can have practical appli-
cations in multiple domains - from triangulation in computer graphics (Gana-
pathy and Dennehy| (1982))) to calculating domain walls in physics (Bazeia and
Brito| (2000)) and generating artistic patterns and modular assemblages in ar-
chitecture (Celento and Harris| (2011)). As such, algorithms for tessellation can
have impact in unexpected areas.

In this paper a recursive tessellation algorithm is described, with original
application in smart textiles, which might have applications in other fields.

A short introduction to the motivations for the proposed algorithm, fol-
lowed by the definition of scope, and insight in state-of-art follows below. The
proposed algorithm itself follows in section III. Finally, the results from imple-
menting the algorithm as well as related conclusions and potential for future
work are presented.

1.1 Motivation

The original motivation of the author is related to the search for the optimal
wiring layout in textiles, as discussed in Nesenbergs| (2016) and |[Nesenbergs and)|
, which could serve as a universal building material for prototypes
of new smart clothing designs, such as [Hermanis et al.| (2013)), [Hermanis et al.|
(2015) or [Ancans et al.| (2017).

The need for all locations on the fabric to be reachable while using the min-
imum amount of material, and the grid of wiring to be resistant to both ac-
cidental damage and cutting by design while sewing the final garment dictate
the properties of the wiring grid, which can be thought of as a tessellation
of the two-dimensional plane, with emphasis on tessellation edges (wires) and
vertexes (sensor connection points) instead of shapes/tiles themselves.

Even though the specific application is narrow, similar requirements for physical

systems in other domains might also benefit from such tessellations and the
proposed algorithm.
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1.2 Scope

The tessellation problem is quite wide and multifaceted, thus a specific scope
for the described algorithm, guided by the motivation above, is defined below:

1.2.1 Dimensionality

It is possible to tessellate space of any dimensionality, although the case of
less than two dimensions is trivial. Usually research and practical applications
are limited to 2D or 3D spaces, although higher dimensions are not unheard
of. The simplest primitive for tessellating an n-dimensional space is called an
n-simplex (Kozma and Szirmai (2015)), but more complex shapes can also be
used. In this paper only two-dimensional tessellations will be explored.

1.2.2 Periodicity

A tiling with a repeating pattern is called periodic, and one without a repeating
pattern is called non-periodic. A special case of non-periodic tilings without
arbitrarily large periodic patches is called aperiodic - the best known examples
of aperiodic tilings are Penrose tilings described in [Steinhardt and Jeong (1996]).
However this paper is only concerned with periodic tiling patterns.

1.2.3 Symmetries

When talking about periodic tilings, an important concept is the symmetry of
the tiling - the way how the pattern repeats.

The most commonly known symmetry is the isohedral or face-transitive sym-
metry, when the tiling has one (monohedral) or multiple (n-isohedral) polygons
that are repeated through one of four Euclidean or rigid transformations also
known as isometries. Depending on the amount and shape of these tiles, they
form one of 17 possible plane symmetry or wallpaper groups, see Schattschnei-
der| (1978)). There are a total of 81 isohedral types of planar tiling as described
by |Griinbaum and Shephard| (1977a). Uniform tilings are isohedral tilings, that
contain only regular figures. If no limit to the number of different vertex types
is set there are infinite uniform tilings, basic types of which can be seen in
Chavey| (1989). When limited to only one type of vertex (isogonal or vertex-
transitive tilings) there are only 11 uniform tilings left called Archimedian or
semi-regular tilings as shown by |Grinbaum and Shephard (1977b)). One of
these can be considered to be two different tilings, as they are mirror images of
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each other. Of these 11 only three consist of one type of regular tiles (regular
triangles, squares, and regular hexagons) and are called regular tilings. The 11
Archimedian tilings can also be referred to as convex uniform tilings. These
tilings are usually referred to by the list of numbers representing the number of
edges of regular polygons surrounding a single vertex - e.g. "4.4.4.4" represents
a vertex surrounded by 4 squares, and "4.6.12" represents a vertex surrounded
by a square, a hexagon and a dodecagon. |Grinbaum and Shephard| (1977b)
also describe additional concave uniform tilings, in which in addition to concave
regular polygons also regular star-shapes are added.

As the original goal of the algorithm is concerned with vertexes and edges not
tiles themselves, a more appropriate symmetry to discuss is the vertex symme-
try or isogonality. This means, that there are one or more groups (equivalence
classes) of vertices where each vertex can be transformed into another vertex
the same Euclidean transformations as in the case of isohedral tilings. When
there are multiple types of vertexes, these are called n-isogonal tilings, and in
the case of single type of vertex these are called monogonal tilings. [Griinbaum
and Shephard| (1978) proves that there are 91 types of normal plane isogonal
tilings (or 93 if special tile or edge colorings are counted) of which 63 types are
convex. All of these are based on 11 different "nets" one of which is in two
enantiomorphic forms. These "nets" can be thought of as configurations or
topologies of vertices which are connected with flexible strings. If these strings
would be of equal length and pulled straight, forming regular rectangles, these
nets would each form one of the 11 Archimedian tilings from above. Thus
there are 11 "classes" of isogonal tilings, each of which contains also one or
more monogonal tilings with the same vertex configuration. In this paper we
will look at monogonal tilings.

1.2.4 Types of edges

The monogonal or 1-isogonal tilings can contain both straight and curved edges.
As curves don’t provide noticeable benefits for the field described in the moti-
vation section, and increase the complexity, only straight edges will be in the
scope of this paper.

The edges surrounding the vertex can also be of equal or different lengths.
Equal length edges will form equilateral, but not necessarily regular, poly-
gons. The previously mentioned 91 types of isogonal tilings, when restricted
to straight and equal edges collapse into less types, of which there seems to be
the 11 semi-regular tilings and at least additional 16 types of non-regular equi-
lateral tilings, some of which have a degree of freedom allowing infinite number
of specific equilateral tilings. These 16 types correspond to types 1G23, 1G25,
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IG28, 1G31, 1G33, 1G38, 1G39, 1G41, 1G43, IG55, IG78, IGT79, 1G81, 1G84,
IG86 and IG88 from the classification by |Griinbaum and Shephard (1978).
These are just the obvious ones, and some others might exist. An example of
equilateral monogonal non-regular tiling IG88, can be seen in Figure 1.
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Figure 1: Equilateral monogonal non-regular tiling example with classification 1G88.

The practical applications discussed in the motivation section would not benefit
from different lengths of edges, as longer edges would introduce proportionally
more risk of damage. Thus for the scope of the proposed algorithm only equal
edges will be considered, resulting in equilateral monogonal tilings.

1.2.5 Out of scope considerations

There are some other considerations related to tessellations that do not impact
the scope of this article. These include the specific cases of triangulation,
e.g. connecting points on plane with triangles, while maximizing the minimum
triangle angle as in Delaunay tessellations (Lee and Schachter| (1980)), or quite
the opposite - tessellating the plane based on equal distance to points on plane
as in Voronoi diagrams (Aurenhammer| (1991)).
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1.3 State-of-art

Even though many tessellation algorithms exist, most of them are related to 3D
surface tessellation for modelling software and games as evidenced by [Hamann
and Tsail (1996) and [Tanemura et al.| (1983]).

Although some research, such as|Delgado-Friedrichs| (2003)), targets similar tes-
sellation problems, there are no algorithms for equilateral monogonal tiling of
arbitrary polygons known to the author. Such an algorithm is proposed below.

2. Proposed algorithm

In order to generate the tessellation grid, the algorithm takes a starting con-
figuration, including a seed point pg, and generates all edges exiting this vertex,
while executing the same recursive algorithm for each of the new vertex points
p; at the ends of those edges. Full source code of the algorithm implementation
in Python 3.6 is available at https://github.com/krisjanis-nesenbergs/
Tessellator/. Several non-trivial details and considerations as well as config-
uration specifics related to the tessellation algorithm are detailed below.

2.1 Global configuration

In order for the algorithm to function, the specific tessellation configuration
must be set, which is unchanging during the recursive iterations of the algo-
rithm:

First, the specific tessellation method is set with three parameters - list of

angles «; surrounding a vertex (A = ap, ..., ay,), and two transition arrays (7,
and T,.), to find the angle at which to start the tessellation on the new vertex,
if it was drawn as a result of traversing a specific angle from the previous vertex
(any choice can be made for the first seed vertex). These transition arrays are
of the same length n as A and at each index i contain the index of the next
angle in A for the specific transition. There are two transition arrays instead
of one - one for clockwise angle traversing around a vertex and one for counter-
clockwise. On most semi-regular tessellations, the order of angles is the same in
both directions, but for "4.6.12" as well as other non-semi-regular tessellations
this order differs. For some tessellation methods multiple transition arrays are
possible due to the fact that they have multiple degrees of freedom, such as
several angles with the same value. An example of these parameters for all 11
of semi-regular tessellations are displayed in Table 1.
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Table 1: An example of tessellation method parameters for all semi-regular tessellations.

Tessellation A (in degrees) T. Toc
353333 60,60,60,60,60,60 | 1,2.3.45.0 | 1,2,3,4.5,0
335336 60,60,60,60,120 132,04 1.3,2.0.4
3.3.3.4.4 60,60,60,90,90 1,2,0,4,3 1,2,0,4,3
33434 60,60,90,60,90 1.3,2,0,4 1,3,2,0,4
3.4.6.4 60,90,120,90 0,3,2,1 0,3,2,1
3.6.3.6 60,120,60,120 0,3,2,1 0.3,2,1
3.12.12 60,150,150 0,2,1 02,1
1444 90,90,90,90 1,2,3,0 1,2,3,0
1.6.12 90,120,150 0,2,1 0,1,2
1338 90,135.135 0.9.1 0,2.1
6.6.6 120,120,120 1,2,0 1,2,0

Additionally, to check if a newly calculated vertex is actually new, not calcu-
lated from another recursive path, an insignificantly small A must be specified
to detect if two vertex coordinates are the same - as the floating point calcula-
tions are not precise two coordinates can be considered the same if they differ
by less than A.

Finally, as only equilateral tessellations are calculated by the algorithm, the
edge length [ must also be defined.

2.2 Recursion termination conditions

Even though theoretical tessellations of plane are infinite, real world algorithms
require some sort of termination conditions. The specific algorithm supports
two termination conditions, of which at least one must be set - either maximum
number of iterations I,,,4, or boundary polygon B which is provided as an array
of points describing its vertexes. B must have non-zero area.

Thus, if I,,.. is set, each recursive iteration is counted and if the count exceeds
Inqz nO new iterations are initialized. Using I, as a boundary condition can
lead to incomplete tessellation, thus use of the boundary polygon is advised.
If B is set, then py must be within this polygon and each new point must
also fall within the polygon, otherwise it is discarded and not processed by the
algorithm further, thus limiting the number of recursive iterations.

2.3 Single recursive iteration
Each recursive call receives several parameters describing the specific iteration.

First - a seed point p which is equal to pg in the first recursive call, and other
generated vertex points in latter iterations. Additionally a starting angle a for
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the iteration is provided, as each vertex might have a different relative angle in
regards to the coordinate system. Finally, transition information is provided,
describing how the current vertex point must be constructed based on how it
was reached. This consists of two parameters - direction of processing 7 which
is equal to either 0 (clockwise) or 1 (counter clockwise), and current angle index
i, in A for specific tessellation configuration.

With this configuration the algorithm first increases the current iteration count
and checks if it does not exceed I,,q.. If it does - stop the current iteration.
Otherwise for each angle «; in A starting from i, and wrapping around the
array (where at k" step i = (is + k) mod n) the following steps are taken:

2.3.1 Calculating absolute angle
As the angles in A are relative angles, an absolute angle o for the current

iteration must be calculated. To do that a running sum ay of all relative angles
used in this recursive call is kept (ax = ag + «;). From this a = ag + «as.

2.3.2 Calculate coordinates of a new vertex

Coordinates for a new vertex p’ are calculated using «; in radians and the
coordinates of p with simple trigonometry as seen in Equation (1).

Pl = po + L * cos(radians(a;))

Py = py + L* sin(radians(a;))
2.3.3 Verify vertex point is new
The set of all processed vertexes P is checked. If p’ € P the vertex point has

already been processed and the algorithm can continue to the next angle a;11
if there are unprocessed angles left.

2.3.4 Verify vertex point is inside boundary

If p’ is in the interior of B (including on the edge), the point is a valid tessella-
tion vertex and can serve as a seed point for the next recursion step. Otherwise,
a point of py is found between line (p, p’) and the polygon B and the resulting
edge (p,px ) is added to the set of final tessellation edges F ending on the edge
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of the tessellated figure. In some cases, if B is not convex, there might be
several intersection points with the boundary and if it is an even number of
intersections, p’ will still fall within the interior of B. In this case the recursion
continues as normal, but all partial edges defined by intersection points and
end points p and p’ that are on the interior of B are added to E as shown in
Figure 2.

Figure 2: Resulting tessellation edges on intersections with concave boundary.

2.3.5 Good vertex is found
When a good vertex point p’ is found it is added to P and the edge (p,p’) is

added to E (Except for cases where it was intersecting the boundary and added
as intersection fragments in the previous step).

2.3.6 Call the next recursive iteration
For the next recursive iteration, the set of parameters [p, as, 7, 45| is replaced
with a new set [p/, o, 7,i.]. Of these p’ is already known. The new starting

angle o, is the opposite angle of the « that lead to this vertex, thus it is
calculated in Equation (2):

ol = (a+180) mod 360 (2)

The new direction of processing is always the opposite of the current one, thus
T =T

Finally, the new current angle index i, is determined by using the correct
element of the appropriate transition array as shown in Equation (3):

Malaysian Journal of Mathematical Sciences 59



Nesenbergs, K.

ifT =0,thent’, [1]

= 3)
ifT = 1,theni’, = Te.[i]

The new set of parameters is then used to call the next recursive iteration until
some recursion termination condition is met.

2.4 Example parameter visualization

To help visualize, the algorithm, Figure 3 shows an example for "4.6.12" con-
figuration, where A = {ag = 90°,a; = 120°,a; = 150°} and the algorithm is
approaching vertex p’ from vertex p. In this example if 7 = 0, then 7/ = 1,
i = T..[i] = [0,1,2][1] = 1 representing 120° to be drawn in counter-clockwise
direction from . Otherwise, 7/ = 0, i, = T,[i] = [0,2,1][1] = 2 representing
150° to be drawn in clockwise direction from o,.

Figure 3: Visualization of example algorithm parameters for "4.6.12" configuration.

2.5 Additional considerations

Some additional considerations might be important for specific applications
and implementations of the algorithm.

When checking for intersection points between the new edge and the bounding
polygon, the new edge might fully or partially coincide with an edge of the
polygon leading to and infinite number of intersection points. This can lead to
the exception to the rule, that even number of intersections will lead to the new
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point being inside of the boundary polygon, thus additional checks are needed
in such cases.

Because checking the list of processed points can be resource intensive it is
advised to use specialized data structures for this list, e.g. a hash table using
representation of the significant numbers of x and y coordinates of the point
as a key could be a feasible solution. Because the calculation of equality of
two points requires the A and coordinates might differ by a miniscule amount,
ordinary hashing algorithms for the point object are not applicable, as the same
point might hash to different values.

3. Results

The proposed algorithm was implemented in Python 3.6 and validated by
tessellating arbitrary simple polygons (both concave and convex) with all 11
semi-regular tessellations (See example in Figure 4), as well as other equilateral
monogonal tessellations (see example in Figure 5).

7 %]
W

Figure 4: Example algorithm result using 4.6.12 tessellation on an arbitrary simple polygon.
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Figure 5: Example non-semi-regular tessellation with vertex angles 90, 120 and 150 degrees.

The speed of algorithm implementation was validated on a modern laptop.
A task of triangulating (Tessellation 3.3.3.8.3.3) an A4 page (210mma297mm)
using triangle edge length of 10mm took 0.9 seconds, generating 2217 tessel-
lation edges in E while calling the recursive function 4067 times.

Of the total run time almost 15% were spent on intersection checking with
boundaries, and 11% for checking if the point/edge are new instead of already
generated through another recursion path, thus these checks are prime suspects
for speed optimization of the implementation.

The source code of the implemented algorithm is available for attributed
use in the link in Section 2.

4. Conclusions

The proposed algorithm is capable of producing all equilateral monogonal
tessellations, including the semi-regular tessellations. This can be used not
only for tessellating a plane, but for tessellating any simple convex or concave

polygon.

With addition of an array of edge lengths for each vertex the algorithm
could be extended to generate any monogonal tessellation without the limit of
equilateral edges. In the use-cases where the overhead introduced by recursion
is not acceptable, the algorithm can also be flattened by the use of standard
recursion flattening methods.
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